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ABSTRACT

A linear stability analysis for a two-layer B6nard problem is considered.

The equations are not self-adjoint. The system can lose stability to time-

periodic disturbances. For example, it is shown numerically that when the

viscosities and coefficients of cubical expansion of the fluids are different,

a Kopf bifurcation can occur, resulting in a pair of travelling waves or a

standing wave. This may have application in the modelling of convection in

the Earth's mantle.
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SIGNIFICANCE AND EXPLANATION

* Flows involving two incompressible viscous fluids exhibit nonuniqueness

in the sense that many interface positions are allowed when their densities

are equal. Two-fluid flows also have quite different dynamical features from

one-fluid flows. The one-fluid Bfnard problem in which the fluid, lying

between parallel horizontal plates, is heated from below has a static solution

for which a linear stability analysis yields no complex eigenvalues. In this
C-,

paper we show that when two fluids are involved, the arrangement in horizontal

layers can have complex eiqenvalues at criticality and therefore can sustain

disturbances which are oscillatory in time. This may have application to the

theory of convection in the Earth's mantle, which is sometimes based on the

assumption that convection takes place in chemically uniform layers.

4.

The responsibility for the wording and views expressed in this descriptive
sunsary lies with HRC, and not with the authors of this report.
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OSCILLATORY INSTABILITY IN A WO-FLUID BENARD PROBLEM

Yuriko RenardyI and Daniel D. Joseph*
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1. I ntroduction

The flow of two immiscible fluids often exhibits phenomena which are without parallel I
in the flow of one fluid. An example is the steady shear flow of two fluids with

different viscosities but similar densities. Such flows are described in Joseph, Nguyen

and Beavers
1
. In this paper, we consider the h nard problem with two fluids lying between

infinite parallel plates, heated from below, and we look for new phenomena.

In the B(mard problem for one fluid, the 'exchange of stabilities' holds and all the

eigenvaluse of the linearized problem are real. In the two-fluid problem, we have both a

real and a complex spectrum.

Buse2 noted that convection in a two-fluid B6nard problem heated from below can

admit solutions where the fluids lie in layers as well as solutions in which there are

convection cells of one fluid surrounded by streamlines of the second fluid. We examine

the linear stability of the arrangement where the fluids lie in two layers with a flat

horizontal interface. Zeren and reynolds
3 
considered this problem, including the effect

of a linear temperature gradient on the.surface tension (Marangoni effect). They state

that they do not know if there are purely imaginary eigenvalues at criticality. They note

that Sterling and Scriven
4 
found purely imaginary eigenvalues in the problem where the

uper fluid is inviscid and the convection In induced by surface tension, which depends

linearly on the temperature of the free surface (arangoni problem). Zeren and Reynolds

1C
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chose to compute neutral stability curves corresponding to zero eigenvalues. We

concentrate on the B~nard problem without the Marangoni effect and show that the equations

are not seif-adjoint. We give an example of a situation when the marginal eigenvalues are

a purely imaginary conjugate pair of multiplicity 2 (the same eigenvalues appear for

negative wavenumbers). Marginal eigenvalues of this type are associated with iHopf

bifurcations free the motionless state to either a pair of travellinq waves or a standing

wave (Ruelle ). According to Ruelle5 , both the travelling and standing waves are

solutions to the nonlinear problem. If they are both supercritical, then only one of them

can be stablet otherwise, they are both unstable. The possibility of travelling waves on

the interface of immiscible fluids may have application to the modelling of mantle

convection (Busse
2)•

-2-
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2. Linear Stability Analysis

*r *

We consider the linear stability of a two-dimensional (x ,z ) problem when the

bottom fluid (fluid 1) occupies a layer from z - 0 to z - 2 and the top fluid

II(fluid 2) lies between z° - £- and z* - I . Asterisks denote dimensional variables.

The plate at z -0 is at temperature TO + AT*, AT > 0, and the plate at z -* is

at temperature T. Fluid i (i - 1,2) has a coefficient of cubical expansion %i

thermal diffusivity Kif thermal conductivity kl  viscosity Pit kinematic viscosity

v and density P a at temperature TO. We define a Rayleigh number

R -; ATA 3 /(I v 1 ), a Prandtl number Pr = V I I and a surface tension parameter

Th - 51/( I where S is the surface tension, all based on fluid 1. There are 6

dimensionless ratioss

a- P1/ 2' r = P1 /P 2 # y - x/2 0 C - kI/k 2. a 1 2 and A1 - 4 /t. Denote

2 1 " I l "

We choose the following dimensionless variables (vithout asterisks):

(,:) i (x, I=)/t * t -X i/t*
2 , uT - To/T, p p00 2/1 where u*

is the velocity (u w ), p is the pressure and T is the temperature. The

unperturbed temperature is

To + I - A1 z for 0 4 : 4 t(

T 0 + A 2 1 - ) for I a 4 1

e and A2 . CA and the unperturbed motion is static. A linearwhere A, C1 22

perturbation proportional to exp(Ot + m~x) is superposed on the velocity, temperature

and interface position.

The perturbation S to the temperature satisfies

00 - wA1 - V 2 e, for 0 z 4 t i 2

0o- vA2 = IV 29, for O( z31

We use the Boussinesq approximation In the Wvier-Stokes equations. Hence, the density in

the buoyancy term is approximated by

(I- aI(T - O)), i - 1.2 (3)

-.3-

".;% %. .. .- ..%.. .....
t !....r , ' -.- ,..• ,0..- .-.. ' . .. '..- -,.- . .• ..- - .. ..- ..-...P- -. . ' .; ..-%.; .



77.W.7:

to yield:

au - -Vp + RPr 
6 e+ Pr V2u for 0 4 z 4 (

(4)

au - -rVp+ 9 + r Pr u for t z 1
-Z a

where is the unit vertical vector. rncompressibility yields

V.u - 0 • (5)

The boundary conditions are: u - 0. 8 - 0 at z = 0,1. The following linearized

interface conditions (see Zeren and Aeynolds
3 for complete derivation) hold at

a (.] denotes I - "2" Continuity of velocity, shear stress, temperature and

heat flux are, respectively,

[( ] - (3w/ + ] - 0

WOz 2 /3z 2* a 2w)j - 0
(6)

i83 - hEl)

(k~S/Sul - 0

The kinematic free-surface condition is

w - oh (7)

where the perturbed free-surface position is a - 41 + h(x,t) and

h - h0 exp(iax + at) • (U)

The conservation of volume of the incompressible fluids implies that the h(x,t) has a

zero mean value as a function of x. This is automatic if a 0 0. There is a difference

between a - 0 and a + 0, the former is disallowed. The balance of normal stress in

1. 3w/S 3  3w av/Oz3 + ]a 2 0 -43 1 ) /3z

1 (9)
-- ~hG (It-.--- + I22( - ) -2.Tn) - - ,/a

a I AT 22( Pr r

We will show that the above problem is not self-adjoint. Hence, the sigenvalues need

not be real. Let fl be a strip of width one wavelength 2w/a, covering 0 1 a 4C 1.

Let b be the part of A in fluid I and n 2 be in fluid 2. Let u and be the

-4-
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complex conjugates of the adjoints of u and 0. The asterisks here denote the adjoint

and the overbars the complex conjugates. Integration by parts of

J *•(Ou + Vp - Pr V 2 - RPree

+ u + Vp - Pr V2u - Rfr 9. (10)
92 r- - - 7B -Z

2C

+ J I (o w A - 9 8e) + f1 ( y( cO - w ,] V 2 8)

yields

S *• (0;*- Pri[v 2 * e vv. -;*)]) - J pv.i"
I

Pr V2u * + .* " 8*e) (11)
2 r

+ (0* -~r; V 2*) + 9(- j* v21 )  B
-1 1 2

where 3 consists of boundary integrals taken at z - over one wavelength in x. We

give the expression for U later. The above integration is facilitated by expressing

7 a u V.(Vu + (Vu) ), where superscript T denotes the transpose,

advantage of' V.u 0 , to obtain, for example,2v 2,*- -
u + (

01 -. = -_.V~_ (u..v)(v.u

rw aw aw

+ (b"+ h) +  2w y--uC + -) - w y-dx
x-0

z- 1 )

Choosing u, 6, p and its derivatives to vanish in the neighbourhood of the interface, we

find V * u -0 and other adjoint equations. Since V . u - 0, the coefficients of

u in (11) do not vanish but are the gradients of a function we denote by p • Hence,

J* .-. * * * * . . -

C~k~ 3:Z : _ .,_ ,,.',/-'." ."-" ."..-.. *.'--" .""- - - .-"-. .. "-". --*..*".-- ".*" *.
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* ~ ~ ~ ~ ; A;*.- . -.

o- Prv2u - Ae -- p,,

in fluid 1 (12)

-14 RPr; V 2i o

and
-- V

~V2-u•- - - e e - -r Is %

in fluid 2 (13)

YRPr- 1.~i 2

Z rO C
We examine 8 to find the adjoint interface conditions. The integration is over one

wavelength in x at x - 1

_au w u2 u ww

u 2  ;)u2 3wv2  
3

1  3w1  -* 1w 2 -' w2
+ -(-+ 

'
) -1u( + .''-) 2Vl " ; :2+3z ax I a ex

a; 2 4w W) +2 2w 2 2 l * a I2

+ 3;2 av +w !-"2wl + 2' ; + ae a e - d,

2 W -. + 2Pr av2 -' ';1 2 ;)(P-) w + (P2  I i-) v2 -a2s(w a- - )

• ;Ut )Vl u 1 2 ;v2 )U 3z 3

+ pr[ Wl (''- +  'w") +'" I •(!"4- + !w-2) -! (I'- + ! w "))]

a 1  3 1  0 2  2  14.

at I a1si

Conditions (6) and (7) yield

P;.-,...-

. % % % . " -



* . - U'

-* 9* I + ) (14)(u_ I - ( * I- fu ,--+ -3x{4

We can add j u• Vp to (10) which introduces J [p wvdx into 3 in (11). Hence,

-J-(p, l- 2 !--) +! 2 (p 2  w2. ) +" 1 (p 1 -2Pr--)

aV 1  +';( 3 aw

a * 6a

2 w 31 _ s
ae 2Pre 2s z 2 2

Condition (9) can be written as

where

I

M, -RPr{----- + -i and M2 Pr~n
a IAT

Using (6) and - a 2 the* last term in (15) is
x2

We use (6), (15) and (16) to obtain

aw -) 21r v 2

3-!= I I- 21 -- - 2 - u )]

w v 1 M21

- r,'p[ 2P, .- L LjiT e + -A1
1 as

-* a 15 * 2 DF2
(A) (- (ON 1- 142) - 1 + -- dx

-7-
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We choose

- 0 17

and use (7) to find

0

v*. rI-* -w . )
4' Al O~[ 1J 2P, -L) - (;

-(A) 21L -,

agl aex 3 z

we choose

1 2
7 2 -r o (

and

3w a
"* 22pr 2 -(v2 P

Nquations (12)-(14) and (17)-(19) are the adjoint equations.

-6 , ,..
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3. Numerical Scheme

We use (5) to eliminate u so that in each fluid, we have the heat equation and one

momentum equation, linear in 0:

Pr(L 2w - a2RB) = OLw, 1

wA1+6-O j. for O(< z' 4wA1 + L O_ 'e

and

%"Pr(-r L 2w - e ) - ULw,
-1 for I z( 1

wA 22+-Le 2 2

where L = 2/3z2 - a2. We change the variable z to zi  in fluid i defined by
2 2

2 1 Z - I and z2 - (Z - 1) + I so that the zi range over [-1,1] in each

12
fluid. We then expand wlzi) and e(z i ) in powers of Chebyschev polynomials Tm(Zi)

(Orszag6 ) for m - O,...,N giving a total of 4W + 4 unknown coefficients. Together

with the free-surface variable h0 , there are 4N + 5 unknowns. There are 6 boundary

conditions and 7 interface conditions. The term of highest differential order in the

momentum equation is 3 4 w/3z 4 . Since we choose w to be an Nth degree polynomial, the

term 3 4w/az4 is of degree N - 4 and therefore the momentum equation is truncated at

the N - 4th degree, yielding N - 3 equations in each fluid. Similarly, since the term

of highest differential order in the heat equation is a 2w/az 2, we truncate this equation

at the N - 2th degree, yielding N - I equations in each fluid. The eigenvalues of the

resulting 4N + 5 square matrix equation were computed in complex double precision on a

VAX1I-780 using the IXSL routine EIGZC.

To check the accuracy and convergence of our computer code, we computed the

eigenvalues for the B6nard problem in one fluid with Pr - 1, R = 2177.41 and 47005.6,

-~ 7a - 2. The eigenvalues for this problem are real and are given by Reid and Harris .  The

S. egenvalues at criticality (at which the real part of a should vanish) are less than

10- 5  when N - 15. A convergence test with N = 15 and 20 showed that several other

eigenvalues had converged to at least 5 figures at N - 15.

E -9-
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'S.

er The computations for two fluids were checked against Zeren and Reynolds3 by adding an

xtra term into the shear stress balance at the interface in order to take into account

the Marangoni effect. We define a Maranqoni number based on fluid 1:

,dS) AT*£
Mea - K- -- and our shear stress condition at z I 1 is modified to:

a (m - 1)/+- I w /3z + a.m. A
h ) - 0

We used their Table 2 for the values of the physical variables at 166C for benzene lying

above water. We checked our eigenvalues against their Table 3 for t1 = 0.1 and 0.6

for heating from below. Note that our definition of the R and Ma are different from

theirs. At £1 = 0.1, converting their parameters to ours, they find criticality at

_4 Ma - 1255.71, R - 178.3045, a1 AT 0.00032537, Pr - 8.1, Q - 3.5 and Ta - 460320. We

computed (a/Pr) - 0.006186 using both N - 15 and 20. This yields 0.00175 for the

eigenvalue q of Zeren and Reynolds. At X1 - 0.6, their parameters in Table 3 become

Ma - 4016.7153, R - 570.3736, s1 AT - 0.0010408 and G - 2.5. We computed -.00436 for

their eigenvalue q at N - 15 and 20. In both cases, we also found stable complex

conjugate pairs in the spectrum.

%* %
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4. Numerical results

To aid the reader in the interpretation of the numerical results, we recall some

results from the Dinard problem with one fluid. In the simplest case, the layer is

bounded at a - 0 and z - I by stress-free conducting boundaries anda

22 r 22 2 2I. 1 /2

.- (1 + h.)(n2W2 + a 2 ) +.1 (Pr - 1)2 (n2, 2 + 02) 2 + a (20)
2 n 2 * 21

SN for n - 1,2,...

Hence, for a = 0,

S- (1 + Pr)n2 2 + 1 pr - n 0 , (21)
- 2

andas 2
42

a~--((I +Pr) t (pr - 11) < 0 (22)

In the critical case F = 0, the least value of R occurs when a and

R - (w2 + a 2 ) 3/a 2. These formulas are for stress-free surfaces but they give an idea of

the variation of O(R, 2 ) in the classical case of one fluid between rigid boundaries.

Nov we consider the case when there are two fluids with equal properties. This would

at first thought appear to be a one-fluid problem. However, it is easy to see that there

is a solution with 1e1 - [tA - 0, h0 0 0 and a - 0. Ne shall use the nomenclature

introduced by Yih 9 in a related problem and call this mode, which is important when the

properties of the two fluids are different, an 'interfacial mode'. We track eigenvalues

as we vary parameters. Besides the interfacial eigenfunctions, we have other

eigenfunctions which we shall call Bfinard modes.

In tracking the eigenvalues, we shall fix all the parameters so that there is a

critical a such that Re a(a,R,PrTn,m,r,y,1,B,L1 ) - 0 with Il a < 0 for other Q.

We shall exhibit parameters for which In a 0i 0 at criticality. ence we obtain

oscillations in the linear problem at criticality ('exchange of stabilities' does not

hold) and the nonlinear problem for 96nard convection in two fluids can have time-periodic

solutions near criticality.

-11-
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Let the two fluids have equal densities at temperature Toand the same thermal

diffusivities and conductivities: r =- 1. We let R - 1695.7, Pr - 1,

**

aAT =0.001, Tn -- 0, Ma - 0. a - 1.1 and B-0.9. Thus, if fluid 1 occupies the

1%

entire flow, the Rayleigh number is lower than the critical one 1708 (see Reid and

Harris7 ). If fluid 2 occupies the entire flow, R is 2072.52 and the flow in linearly

unstable for a range of a. We choose 1I = 0.4. Figure I is a graph of the growth

rate Re a against a.

We are approximately at criticality when a -3.1. in this case, we compute

a - 0.000072 ± 15.9259 with N - 15, 20.

The five numbers next to the curves in Figure 1 denote branches which display

different features. The interfacial mode is associated with branches 1, 3 and 5. Branch

I can be obtained from the interfacial mode with a + 0 when the properties of the fluids

are equal (B - a - 1) by moving B to 0.9 and a to 1.1. This branch is real-

valued. Branch 2 in associated with the least stable of the 96nard modes for a single

fluid when a + 0. This branch is approximately -9.87 at a + 0 and would correspond

to the largest value of (21). Branch 2 is real-valued. Branches I and 2 coalesce and

split into conjugate pairs at a - 1.275. At a - 6.79, the conjugate pair again splits

into the two real-valued branches 4 and S. Branch 4 is associated with a 86nard mode and

remains real, decreasing rapidly as a is increased, as in the single fluid problem (see

(22)).

Branch 5 is an interfacial mode. It is real-valued and negative. The stability for

large a which is associated with branches 4 and 5 is explained by our choice of 6 and

the Boussinesq approximation (3). We consider the densities p1 - aI(T - To)) at the

unperturbed interface z - t when the temperature T - T
o is given by (1). Then with

r a I and 0 - 0.9, we find that P2 (1 - 0.6a2) is the density of fluid 2 at I - 0.4

and P2 (1 - 0.54a2) Is the density of fluid 1. Hence the heavy fluid is below and

gravity may be expected to stabilize short (large a) waves. The interfacial eigenvalue

on branch S is discussed in 15.

N. , .. *S
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Figure Ii The growth rate Re (a) is plotted against the wavenumber n for

a 1695.7, Pr - 1, -IT 0.001, Tn = Ma = 0, r = y = = 1.

Branches 1, 2, 4 and 5 belong to real-valued elgenvalues. Branch 3

consists of a complex conjugate pair.
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Figure 2 shows the growth rates versus a when the Rayleigh number is increased to

R - 2177.41 while other parameters are fixed as in Figure 1 and shows that the

instability on branch 3 is associated with the coplex conjugate pair of branch 3 in

Figure 1.
VI

i%
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15. Asymptotic Analysis of the Interfacial igenvalue for Short Waves

We now consider disturbances of rapid variation whose length scale of variatinn is of

10the same order 0(1/a) as the short perturbation wavelength

We rescale z to 1 - (z - £1) and let n be 0(1). The equations in fluid 1 are

00 - wA 1 - a
2

L' * where L* 32/n2 I 1 and (a - Pr 2L*)Lew - -RPrO. In fluid 2,
I.2L ( IPr2 RPr

00 - wA 2 - a
2

L and (0 - r L )L w = 8. The interface conditions are:

w I w 2 =Oh, (23)

l3w wI/an] - 0 , (24)

(83 -(A~h ( (25)

ma 2wI/an-2 _2w 2 /a1i2 + (m - 1)W1 -0 (26)

Cae 362/an , (27)
42 1 3 + h 3Tn

a(w;w 2 / - a wI/An ) + aw /3I1.3a2(1 ) h

h ([ - + 1 )2 (g ", •
oAT A r r Pr 211

Since the normal stress condition (28) contains both odd and even powe r of a, all the•*
variables are formally expanded In powers of 1/a. To the Oth and lot orders, L 0 - 0

and L w - 0 in each fluid. Using conditions (23), (24) and (26), we obtain

w
1 

- C 0 (1 - ")" + 0(1/a) and v 2 - C0 (1 + )e
-  

0(1/a) as a . -. which yields to

this and the next ardor, 3w/3n - 0 at the interface. Hence, the normal stress condition

in
IsI

I( R2 .n( + 12A2(a 3 " - a1 _IA3  f

where, for the moment, surface tension has been neglected. 7b avoid the trivial solution,

we choose 0 - 0 0 /a + 0(1/a ) for large a. he normal stress condition yields

2(- +1) A 2V1

-16-
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A In the computations for Figure 1, the asymptotic formula is accurate to tO for

C9 20. We computed -1.494 for a -20 using N - 15 whereas the asymptotic formula

yields -1.4S.

Turning now to a consideration of the effect of surface tension, we find that when

a 2 n/ 0(1), then

R___ 1 ) + I 1(2T)( 9

0 2"2' ~ ~ (9

We computed the eigenvalue for the parameters of Figure 1 at T I and a - 20 to be

-6.66 and the asymptotic formula yields -6.72. Equation (29) shows that surface tension

is always stabilizing for short wave disturbances. The stabilization of short-waves by

surface tension, even with adverse density ratio*, has been found in other flows such as

* steady shear flows with two iiscible fluids of different viscosities1 '1
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